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ABSTRACT

Variational inequalities associated with monotone operators (possibly

nonlinear and multivalued) and convex sets (possibly unbounded) are studied in

reflexive Banach spaces. A variety of results are given which relate to a

stability concept involving a natural parameter. These include characteri-

zations useful as criteria for stable existence of solutions and also several
, %

characterizations of surjectivity. The monotone complementarity problem is

covered as a special case, and the results are sharpened for linear monotone

complementarity and for generalized linear programming.
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SIGNIFICANCE AND EXPLANATION

Variational inequalities (VI's), including complementarity problems,

arise in many areas of applications, ranging from mathematical economics to

structural mechanics to boundary value problems and mathematical physics.

VI's are central also in mathematical optimization, which itself has an

exceptionally wide range of application. One important general class of VI's

involves monotone operators; this case already covers linear and convex

constrained optimization and much more complex nonlinear phenomena as well.

One is usually interested in treating a given problem not in isolation

but rather as one of a parametrized family of similar problems, with attention

given to analyzing the nature of the dependency of the solution(s) on certain

natural parameters involved in specifying the original problem. This paper

introduces and studies a general notion of problem stability for VI's.

Roughly speaking, a VI is called stable here if it is solvable and remains

solvable for all small perturbations of the relevant parameters. Combined

with monotonicity, such stability entails significant additional properties

concerning the parametric solution behavior.

The heart of the paper develops a number of characterizations of, and

sufficient conditions for, stability. The results are established for general

monotone VI's in reflexive Banach spaces. When specialized to monotone

complementarity problems, the results unify and considerably extend a large

number of results from the finite-dimensional linear complementarity

literature.

Responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.
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STABLE MONOTONE VARIATIONAL INEQUALITIES

L. McLinden

1. Introduction. Let Z be a reflexive Banach space having dual

W, with (z,w) denoting the value w(z) EIR Of a continuous linear

functional w E W at a point z E Z. Let C be a g~ven nonempty closed

convex subset of Z, and let T be a given operator (possibly multi-p

valued) from Z into W. The variational inequality Vf(a) associated

with T, C and parameter a E W is to
-. •. -

find z E C n &(T) euch that, for some w E T(z),
V(a)

(z' -z, w - a) 0 for all z' EC b(T) . .'"

Here, &(T): - (z E ZIT(z) # 0] is. the effective domain of T. Also of

use will be R(T): - w wiw E T(z) for some z E &(T) ), the range of T.

A prominent instance of I(a) is the complementarity problem C~a),

obtained by restricting C to be a cone. Writing Q instead of C in

the cone case and nutting Q [ w E W1 (z,w) > 0 for all z E Q), one

can reformulate the problem into the more standard form .

find z E .D(T) such that, for some w E T(z),

z E Q, v-a E Q* (Z, v-a)-0JC()

The case in which T is an anti-selfadjoint (i.e., skew-symmetric) linear

operator is of particular interest, as it covers generalized linear

programming problems. Problems of the above sort have long been recognized -.

as being important to many different areas of application.

This paper treats problem V(a) under the assumption that T is a

monotone operator, that is, satisfies

(z' z, - w) > 0 whenever w E T(z), w' E T(z')

Sponsored by the Untted States Army under Contract No. DAAG29-80-C-0041 and by No
the National Science Foundation under Grant No. DMS-8405179 at the University
of Illinois at Urbana-Champaign.
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This monotone case is arguably the most basic. It encompasses not only

constrained nonsmooth convex minimization and constrained nonsmooth

convex-concave minimax problems, but also a wide range of other variational

problems (e.g., involving differential and/or integral operators) which

are not expressible in terms of such optimization. See Minty [39] and

Stampacchia [56], respectively, for early, authoritative discussions of

monotonicity and of variational inequalities. There is now a very large

related literature having many different aspects. The reader might

consult Brezis [5, 7], Browder [11], Kachurovskii [25], Ghizzetti [23],

Auslender [4], Mosco [44], Kluge [30], Pascali-Sburlan [47], Cottle-

Giannessi-Lions [14] and the references therein, in addition to the

references cited below.

Several comments are in order concerning our general setting. The

need to permit C to be unbounded is rather clear; for example, to cover

the important complementarity problem C,(a). Less evident, perhaps, is

the value of permitting T to be multivalued. This capability is actually

necessary for treating many applications; for example, 7(a)'s arising

from nonsmooth convex or convex-concave optimization in which the problem's

defining functionals fail to be continuously differentiable everywhere on

relevant domains. Reflexive Banach spaces have been chosen because some of

the key tools used in the majority of our results appear to be limited

essentially to such spaces. Certain of our results, however, are valid

in the locally convex Hausdorff setting; these will be indicated usually.

We generally consider V(0) to be the given problem (a = 0 being a

harmless normalization here) and regard 7(a), for a near the origin, as

a perturbation of V(O). In optimization contexts such perturbations
4,.-
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3

usually correspond to adding a linear functional to the problem's

objective function and/or to varying the data victor which appears as the

"right-hand-side" of the system of constraint inequalities.

The focus of the paper is provided by the following definition. We

say '(0) is stably solvable (or just stable) if and only if (a) is

nonempty for all a in some neighborhood of the origin, where

Q(a): - [z EZIz solves V(a)) for all a EW

Our goal is twofold. First, briefly to draw attention to the abundance

of powerful, general information already implicitly available for stable

monotone problems by virtue of the relatively well developed theory .of

monotone operators. And second, as the heart of the paper, to derive a

number of results relating to stability for the problems V(a). These

include various characterizations of stability. Some of the corollaries

are surJectivity results, in that they ensure (CZ) - W, but without

necessarily requiring coercivity of T on C. (Here, of course,

( a E W IOn 0' 0])

The paper is organized as follows. In §2 we make precise how general

theory for monotone operators converts into facts about stable monotone

problems. Also, we introduce, and give various sufficiency criteria for,
°.

a certain blanket hypothesis of maximality which is needed for most of the

results. In §3 we define the class of C's for which the strongest

results hold. These are the sets C which have at least one "bounded

nontrivial section". This notion is seen to be the proper generalization

to general convex sets of the familiar notion of weakly compact base for

cones.

--
--.. .?.-J. 4 4 .
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Section 4 is the heart of the paper. Assuming 1W(O) has a "strictly

feasible" point, Theorem 1 assures (without maximality) that the sets

. (a) are uniformly bounded for a varying near the origin, and Corollary IA

gives a convenient a priori bound on 0(0). Theorem 2 gives a sufficiency

criterion for stability valid for single valued T's in general spaces.

Theorem 3, on which many of the subsequent results depend, is a structure

theorem for &(0). Theorem 4 presents six characterizations of stability.

Theorem 5 adds an extremely strong seventh characterization of stability

valid whenever T enjoys some very weak form of strict monotonicity with

respect to C.

In §5 we sharpen the earlier results for the generalized linear

complementarity problem (abbreviated LCP), that is, problem C(a) with

T linear. Theorem 6 gives further results for this situation. Theorem 7

gives still sharper results for the case in which T is anti-selfadjoint

linear.

In §6 we apply the results to linear progranming in reflexive Banach

spaces.

A Finally, a word on notation. We denote the indicator function of C

and the support function of C by C and o, respectively. Thus,

.- : Z - (-w,c] and cC: W (-cc,c] are the lower semicontinuous convex

functions given by

0 if z EC*C '(z)" , c(W sup <z,w>
if z E Z\C z s C

The recession cone of C and the barrier cone of C will be denoted by

0 0C and D, respectively. Thus,

%0

.. . . . . . . ..-. . . . .
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o+C- [z E z c + z C , D- (w E W c(w) < 0•

The abbreviations

cl, int, ri, core, conv,

respectively, denote the operations of closure, interior, relative interior,

algebraic interior, and convex hull applied to a set.

2. A maximality assumption and implications of stability. The

designation n(a) for the solution set to 7(a) effectively defines a

multifunction (point-to-set function) 0 from W into Z via

0(a):- tz E CIz solves If(a).

We begin with a convenient representation of 0. It involves NC, the

normality operator for C, which is the multifunction from Z into W

defined by

[w EWI(z' - z,w)_<0 for all z' E C) if z E C
NCz 0 if z E z\c

Notice NC is exactly aC, the subdifferential of *C. The sum

T + NC =: M of T and NC  is the multifunction from Z into W given

by

M(z) : (T + Nc) (z) :- T(z) + Nc(Z)

with the convention that S + 0.- 0 - 0 + S for any subset S of W.

Writing M 1 for the multifunction inverse to M, which is defined by

4-...4.~..... % %
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.5(M" ) - i(M), R(M" ) O h(M) and z EM' (w) if and only if w EM(z),

one obtains easily that Q(a) - M_ (a) for all a E W, that is,
,, -i 2.l

") - M (T + N)

Hence,

V(0) is stable <-> 0 E int h() . (2.2)

The following blanket assumption is in force for the remainder of

the paper, unless otherwise stated:

M:- T + NC is maximal monotone. (2.3)

This means M is monotone and, for each (z, f) E Z x W such that

3 M( ), there exist some z E .(M) and w E M(z) for which

< - z, ^ - w) < 0. In our discussion the sum operator M in (2.3) is

automatically monotone, since T is monotone by hypothesis and NC,

being the subdifferential of the convex function *C, is also monotone.

We note that in fact here NC  is maximal monotone [51], since C is also

nonempty and closed. The maximality of the sum in (2.3) is a subtle

matter, but fortunately broad criteria are available to cover most cases

of interest.

PROPOSITION 1. The blanket assumption (2.3) holds under any one of

the following three conditions:

(a) h(T) D C and T is (monotone and) singievalued and hemi-

continuous (i.e., continuous with respect to the weak* topology of W)

along each line segment in C;

,

------------------ V ,,- - - -V,---"--------,---,-.o .' ." .," %-"%IN
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(b) T is maximal monotone and 0 E ri(conv h(T) - C);

(c) T is maximal monotone and T is locally bounded (i.e.,

uniformly bounded in a neighborhood of) some point of C fl cl .(T).

Notice that the requirement 0 E ri(conv h(T) - C) in (b) is

implied by

either 0 .&(T) n lint C , or o o C nfint &T) ,

' or Z finiLte-dimensional and

0 ri &(T) n ri C

Criterion (b) of Proposition 1 follows from McLinden [37, The( i

* The other criteria (including the special cases of (b) just mention, ' are

consequences of Rockafellar [52, Theorems 1, 2 and'3].

T- connection with applying criteria (b) - (c) above to verify (2.3),

observe that T is known to be maximal monotone in each of the following

general cases: (1) if T is the subdifferential of a lower semi-

continuous proper convex function on Z (Rockafellar [51]); (2) if T is

induced via a certain twist from the subdifferential of a closed proper

convex-concave function on Z -Z1 X Z2  (Rockafellar [54]); (3) if T

is a closed, densely defined monotone linear transformation whose adjoint

is also monotone (Brezis [6, Theorem 1]).

Further maximality criteria for both T and M, applicable when Z

is a Hilbert space, can be found in Brezis [7].

Since maximal monotonicity (in the reflexive Banach setting) is

preserved under passage to the inverse multifunction, the blanket hypothesis

(2.3) is equivalent (cf. (2.1)) to the condition

F%.
'-,- " ". .'. . - '' " -" " - . . . . . .' ' , -" - -, ", . .. ".. . . . .- . . , -- - * - .- - . " '_ _ _ _ -
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is maximal monotone . (2.4)

Powerful facts now follow readily concerning the parametric solution

multifunction 0 and, in particular (cf. (2.2)), stable 7(0)'s.

PROPOSITION 2. Assuming (2.4) holds (equivalently, (2.3)), each of

the following holds:

(a) If 0 E int .5(0), there exists a neighborhood U of the origin

such that

U 0(a) is bounded
a EU

(b) For each a E int .5(0) the set 0(a) is nonempty closed

convex and bounded, and C is upper semicontinuous on int .() from

the norm topology to the weak topology.

(c) The set

(a E int &(Co 10(a) is a singleton, say z, and

llZn - zl1- 0 whenever lan - all -0, an E int h , Zn , E (an))

is a dense G subset of Jut .(I.

(d) If Z is finite-dimensional, the set

(a E int XP(V) fails to be differentiable at a]

has Lebesgue measure zero. In particular, 0 is singlevalued and

Lipschitz continuous (Lebesgue-) almost everywhere on int .(0).

Parts (a) and (b) here follow from Rockafellar [50, Theorem 1].

Part (c) was established independently by Fitzpatrick [21] and Kenderov-

Robert [29]. Part (d) was established by Mignot [38, Theorem 1.3].

V"%
-'LV..-'% X. V
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Of course, any other properties established for maximal monotone

operators also apply to 0 with the aid of (2.4), i.e., (2.3).

Finally, we wish to point out that general sufficiency criteria for

0 E &(() [solvability] (2.5)

and for

W D *(C [global solvability; surJectivity of ] , (2.6)

' respectively, have been provided by Rockafellar in [52, Theorem 5] and

•/ "(partly codifying .the singlevalued case obtained independently by

Hartma'a-Stampacchia [24] and Browder [9]) in [52, Theorem 4]. We exhibit

below several sufficiency criteria for (2.6) not-requiring coercivity of

the operator T + NC . The main focus of the present paper, though, is on

0 E int ( [stable solvability] , (2.7)

the basic case intermediate between (2.5) and (2.6).

3. Sets C which admit a bounded nontrivial section. A prominent

role is played below by certain closed convex sets C which, while

possibly unbounded, yet have bounded "nontrivial" intersection with at

least one closed halfspace. Let us make this precise. For any w E W

and any e E [O,w), define

S(w,c):= z EC (z,w) > - e + C(w (3.1)

to be a section of C, where recall ac(w) := sup[(z',w~lz' E C). We say

that S(w,C) is a nontrivial section of C if and only if it is nonempty

i%,-j%% . .% - ..- .. ..%. %, .. ._ t. %,o. %.%_. % .. i,% . Lr .. , % % % . % . .,,% .,• /. . ,. . ,.,% %.V %'

.i / / / Oi tm .l . . IItI II lli fl i(i{li=i I 
i  

i !-{N l I . i 1 {.a i " !/ik" h .li i . %l it %
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I
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and > >0. It is clear that any section of C is expressible as

S(wE) - eeac(w) (3.2)

where a a designates the e-approximate subdifferential of oC  (e.g.,

[42, §10.h]), and that S(w,C) is nontrivial if and only if e > 0 and

. w E D:= [w E WIc(W) < -1. A nontrivial section which is bounded con-LC
-. stitutes the correct generalization, to general closed convex sets in

reflexive Banach spaces, of the familiar notion of weakly compact base

(cross-sectional truncation) of a cone.

These various sets are illustrated in Z -R by

C:- zlz2 >exp z l ). one gets D - (wIw2 <0< w1  or w < ,

(Nc) - twiw2 < 0 <w or w- - w1  and 0+C= tzz<0o <

and both bounded and unbounded nontrivial sections of C exist.

Sets which admit a bounded nontrivial section have important

properties. Among these is that

C has a bounded <>0 int D .(3.3)

nontrivial sectionJ

More specifically,

there exists C > 0 such
that S(w,e) is a bounded . <r w E int D , (3.4)
nontrivial section of C)

in which event

for all X E [0,-) the sets S(w + a,%) are
nonempty and uniformly bounded for all a in (3.5)
some neighborhood of the origin.

These facts follow from the next two results.

% % % % %

A - F ° • • ,- •• • • • • • L ° - - o
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°
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PROPOSITION 3. The support function c  of C is continuous on

core D; in particular,

core D -nt D . (3.6)

Also,

O+C- Do: . -[z EZ(,w < O for all w ED) (3.7)

This follows from Rockafellar [49, Corollaries 7C and 3C(d)] applied

to the conjugate pair of functions and *C. In the same manner the

next result follows from independent work of Moreau [41, 42] and

Rockafellar [49]; see also [3, Theorem 2 and ff.].

PROPOSITION 4. (a) For any w E core D and any Ik E [O,e), there

exists a neighborhood U of the origin such that

U S(w + a,%) is bounded
a EU

and each set S(w + a,X) appearing in this union is nonempty.

(b) On the other hand, for any w EW. if S(w,e) is nonempty and

bounded for some e > 0, then w E core D and thus part (a) applies.

The property that C have a bounded nontrivial section is used in

the rest of the paper (by virtue of (3.3), (4.24), (4.25)) as a conven-

ient condition under which a number of Implications involving stability

criteria are strengthened to equivalences.

It is sometimes possible only to deal with a weaker notion than

stability, one permitting D(fl) to have empty interior. Thus, we

define V(O) to be Suasistable provided
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Se riV(l), (3.8)

"ri" denoting interior relative to the closed affine hull of DOI)(

Concerning this notion, see (4.27) of Theorem 3 and Corollary 3C

below. Also, in (36] can be found explicit quasistability results for

parametric, noncoercive general convex minimization.

4. Main results: the general monotone variational inequality case.

We begin with several results not requiring the maximality assumption

(2.3). The first one provides a convenient criterion for uniform bounded-

ness of the solution sets O(a) for a varying near the origin. It can be

compared with Proposition 2(a). We write

T(C):- V [T(z)jz E C)

THEOREM 1. Even without assuming (2.3), if

0 E cony T(C) + mut D , (4.1)

" . then there exists a neighborhood U of the origin such that

*U O(a) is bounded . (4.2)
a EU

Proof. Hypothesis (4.1) gives

0 Ei; + int D , where : " wk , (4.3)

for

w E> 0 Xk C X (4.4)
k ~k) zkE )kC,

(summation over k l,...,n). Choose any

.%~

". .z "-. ' ''.".".z" " e" . ."." " .." .'j $ " .j jz .. e~. J 5e e * . _'L .4*".*
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. ,> zax(O, aC(-w) + y) , where Y: E Xk(zkw k ) . (4.5)

By (4.3) and Proposition 4(a), there exists a neighborhood U0  of the

origin such that

U S (a - is bounded .(4.6)

a E U

Consider any a E W and any z E 0(a). Then z E C and there exists

w E T(z) such that (z' - z, w - a) a 0 for all z ° E C n&(T). Consider

any index k. Taking. z' - k  gives

0> (zk- z, a - ),

which together with monotonicity gives

(zk , -k> _- , (zkwk> + - z,w)

- (kzwk) + (zk - za)

Multiplying through by 'k and suning yields

(z, -y)>- y+ (--,a) 

where g:- E \zk, so that

(z,a - , y > - y + (l.a)

By the arbitrariness of z this implies that

O(a) C [z E C (z,a - y) >- ) + (i,a))
[z E C (z , a-,- X +ac (a -)] (4.7)

= s(a - -, .)
S (

r -P

%'-"-

: .. .'....- ..-. .. .........-....-.........-. .,-..-.-...,..,.,. .-.. '- - ..- , .,",., - ,-,, ,- .-. , ,, ..- ,'/ -. ... N.,..' ,-,,..' .'.,,"'.."; ' ."' . ,-" .'' . ;- - ..- - ..- .A % '...-. .-
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whenever

X > maxfO, a C(a - )+ y - ~a)1 (4.8)

For future use, observe that

the second inclusion in (4.7) is an (4.9)

equality if X~ - aC(a - w- + y - (i,a) > 0.

We now show that in (4.8) the choice X - works for all a sufficiently

small. Since - : c is continuous at 4i by Proposition 3, for

£ p.-max(0, o(4) + YJ(4.10)

(cf. (4.5)) there exists a neighborhood. U1 of the origin such that

p(a +~ <c pq(-w-) for all a EU.

By the choice (4.10), this yields

a o(a w ~ + ma(aC- -)y (i,a) < p for all a E U1  (4.11)

Combining (4.11), (4.5), (4.8) and (4.7) yields

0'(a) C S (a -wij)for all a E U1  (4.12)

Choosing u:- u0 nu1 and combining (4.12) with (4.6) establishes (4.2).

The explicitness of the preceding proof provides a potentially easily

obtainable a priori estimate for O(a) which does not require knowing the

neighborhood U in (4.2).

I.- COROLLARY 1A. Even without assuming (2.3), for any

a E cony T(C) + mnt D

-. -,%*.-'* ... *

L % A-% L%~
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one has

0(a) ( z E CI(z,~- a)< y + (,-a)~ (4.13)

with the set on the right nonempty and bounded, whenever

: ~ wz,) and y:- E (zw)(4.14)

(summation over k -1,...,m) satisfy

Wk E T(z) z~ E C, XE 0 k 1 ,(4.15)

a E 9~ + itD, (4.16)

y + (i, -a) > inf *(z',,g a) .(4.17)

z' E C

* Proof. The argument given above for (4.7) establishes the inclusion

(4.13) assumingonly (4.15). Now suppose (4.16) and (4.17) also hold.

S-.! By (4.17),

X: qC(a - ) + y - ~a) 0

Hence, (4.9) implies the set on the right in (4.13) equals S(a 9,%

for this X~, so by (3.2) it equals a~aC(a -). Since (4.16) and

Proposition 3 imply ac is continuous at a - , this set is nonempty

and bounded by Proposition 4(a).

The proofs just given for Theorem 1 and Corollary 1A apply equally

V well to any locally convex Hausdorff spaces Z and W paired in duality,

L ~with weak boundedness in Z and Mackey interior in W, if one assumes

a C is finitely bounded above on some Mackey neighborhood in W (cf.

[3, pages 453-455]).

0%% %%
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In the other direction, if one specializes to Z and takes

for C the usual nonnegative orthant, the estimate (4.13) refines

(cf. [34]) to give the following A -norm bound:

-1n

O(a) C (z > E z i (y + (i, -a))), (4.18)
i-i

where p.:= minfi -aili l,...,n), whenever a and the terms in (4.14)

satisfy (4.15), - a > 0 (coordinatewise) and y + Ii, -a) ?-0.

Most of our subsequent results use information about the structure

of &(0) (cf. (2.1)). Even without assuming (2.3) one has

h(O C T(C) + R(Nc) C T(C) + D (4.19)

and

nt D C R (Nc) C D . (4.20)

The first part of (4.20) follows from (3.2) and the nonemptiness assertion

of Proposition 4(a). The first part of (4.19) is a simple rephrasing of

the elementary inclusion

I + T2 ) C ?(T ) + R(T2 ) . (4.21)

Employing the same technique as above, we can obtain a sufficiency

criterion for stable solvability valid beyond the realm of reflexive

Banach spaces.

THEOREM 2. Let Z and W be any locally convex Hausdorff spacer

paired in duality, with Z (resp. W) assigned the weak (resp. Mackey)

topology induced by the pairing. Assume that T is singlevalued and

monotone on C, that T is continuous on the inter-

section of C with any finite-dimensional subspace of Z, and that

. - -v- .•. . .... ,. . .... . .; .... .. , ... .. ...... , .. , .. . .... ,.......,,:.,.._... %. %.- , , . .,,..,....



17

is finitely bounded above on some neighborhood in W. Then

T(C) + core D C int &(0) (4.22)

(in addition to (4.19)).

Proof. Let a E T(C) + core D. Then there exists E E C such that

a - Ti E core D. By the argument given for (4.9) (begin just after (4.6))

we have

0(a) C S (a - Ti.) (zt E Cj (z - ,Ti - a) 0) K

where %:= ac(a - Tz - (, a - T). (This corresponds to there being
just one index k, and writing (zkwk) w y - , " - Ti.)

Recall (3.2). By the theorem of Moreau [41], £42] (see also [3, Theorem 2]),

S(a - TE,).) is compact and nonempty and core D - int D. For any

z E C\K, monotonicity implies

(z.- Tz, a)_ (z- T; a .

Hence, an existence result of Brfzis-Nirenberg-Stampacchia [8, page 297]

applies to C and z:- Tz - a, yielding nonemptiness of O(a). This

shows T(C) + core D C h(O). Since the set on the left is open (by

. core D int D), (4.22) follows.

Theorem 2 strengthens an existence result of Allen [2, Theorem 3],

which was based on earlier work of Ky Fan [19, Theorem 1], £20]. Allen

requires that z (z,Tz) be (weakly) lower semicontinuuous on all of C

and doesn't obtain the stability conclusion. (We note that [2, Theorbm 3]

ostensibly treats a general quasiconvex f in place of the indicator

%* % %°%
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case f " ,C, but the proof provided requires f convex in order for the

counterpart of the present set K to be convex, and this general convex

case can be reduced to the indicator case by using Mosco's idea [43].)

From (4.19) and (2.2) follows immediately a weak necessary condition

for problem T(O) to be stably solvable:

0 E int(conv T(C) + D) . (4.23)

We say "weak" not only because of the presence of the convex hull operation,

but primarily because of the fact that, for two general monotone operators

T and T2, the set R(T I + T2) in (4.21) can be drastically smaller than

-(TI) + P(T2 ). For example, consider T - T2 = L, where L is any

nonzero anti-selfadJoint (i.e., skew-symmetric) bounded linear operator

from Z into W. It is therefore noteworthy that such collapsing behavior

cannot occur if -T2  is a normality operator, such as NC, in a reflexive

Banach setting and assumption (2.3) holds. This is established by the

following structure theorem for .( . In particular, notice (4.25) shows

that the weak necessary condition (4.23) is in fact also sufficient for

stability of T(O). Note also that from (4.25), together with the

elementary inclusion
-0

conv T(C) + int D C int(conv T(C) + D) , (4.24)

it follows that each set C(a) appearing in (4.2) is nonempty (since for

U0  in (4.6) one has -4 + U C int D).

Henceforth, assumption (2.3) is in force.

":Y~iv - v ..- , - v . v v ,..- .- ,,..- -- , ,-..:,- - , v .. ...- .- , .., -...-.-.... .-.-..--.-. .v.-.-.-..-.-.-..,-...--...-.....-..-..

=" " '- " % % " " "°% ***°* "" . .-', ." ." " " % " % " - . . .." "..""" - ... "- % "- * -' . ." - -
"/ -- % '" -"''"" ':'"-"L-"" "'' """-',--A ' ' 'L ," ""' " "'" '.'" "--" -"'"' ";" P~ " "", "" """
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THEOREM 3. One always has

int 4(p) - int(T(C) + D) = int(conv T(C) + D) (4.25)

and

cl h(O) - cl(T(C) + D) - cl(conv T(C) + D) . (4.26)

If ¢ # ri(conv T(C) + D), then

.(ri ri(conv T(C) + D) . (4.27)

Formula (4.25), which sharpens the inclusion (4.22), will itself be

sharpened below in Corollaries 4A and 5A.

Proof. By the positive homogeneity of NC, the operator M:- T + NC

satisfies M + NC = M. By this and (2.3), M + N is maximal monotone.
C C

Since N =za and (using M + Nc - H) h() .D(M) flhb(NC) C.(NC), it

follows from McLinden [37, Theorem J that

I(M + NC) r o(M) + D -- conv(R() + D) , (4.28)

where z designates that the sets on either side have the same interior

and the same closure, and also, provided 0 0 ri conv(R() + D), that

ri R9( + Nc) C ri conv( 9() + D ) (4.29)

Observe that

KR(M) + D U (T(z) +N (z) + D)z Ec n, hr

- V (T(z) + D) inT(C) + D , (4.30)
z EC

where the middle equality uses R(NC) CD, the fact D is a cone, and

0 E Nc(z) for z E C. Therefore, using convexity of D,

% %-Z. AF.-

',.."" . 'i-.. -,"-... ./ . .- " ,'> .'.- ,.",.' "..'- . " '-"% ' ' ' ,.,'..-." ".'.-",", "-.'. . - ."...,.-, -... '.-.
f # d - ? "F- - ? , V j-." *.P .
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conv(R(M) + D) - cony T(C) + D . (4.31)

Combining (4.30) - (4.31) with (4.28) - (4.29) yields (4.25) - (4.27),

since R(M + Nc) = -9M) -.

The power of Theorem 3 is suggested by the following result, which

recovers quite efficiently certain results of Minty [38a] and Rockafellar

[50, Theorem 1], [53, Theorem 2] proved originally by different methods.

COROLLARY 3A. Let Z be a reflexive Banach space with dual W,

and le-t T be a maximal monotone operator (possibly multivalued) from Z

into W. Then

int )?(T) - int conv A7(T)

and

cl ,?(T) - cl cony 9(T)

In particular, both int f(T) and cl R(T) are convex, f(T) is dense

(resp. all of W) exactly when conv R(T) is dense (resp. all of W),

and i # int cony R(T) implies

cl int )?(T) - cl A(T) , int cl R(T) int t?(T)

.

ft°

ft °
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If 0 # ri cony R(T), then

ri of(T) " ri cony 9(T)

All of the above facts hold also with replaced everywhere by .

Proof. Choose C:- Z. One has N.,(z) (0) for all z, D = (0)

and T"1  C 2. The assumed maximality of T ensures (2.3) holds for this

C. Thus, Theorem 3 yields the first and third assertions. The second follows

easily. Since T"1 satisfies the same assumptions as T, the part already

- established applies to it, yielding the last assertion.

The surjectivity (i.e., global existence) condition

W A0/) (4.32)

is known to hold if C n .(T) is bounded or, more generally, if T + NC

is coercive. (See the comment surrounding (2.6).). Part (a) of the

following corollary characterizes such surjectivity (and incidentially

gives a necessary condition for coercivity of T + NC) . Additional,

more specialized sufficient conditions for (4.32) not requiring coercivity

of T + N appear below in Corollary 5A (see also Theorem 5') and
C

Theorem 6.

0 COROLLARY 3B. (a) One has

W = . C( <-> W = conv T(C) + D

(b) In particular, (4.32) holds if C is bounded, which occurs if

-- and only if D - W. If 0 +C - (0), then C is bounded if it admits a

bounded nontrivial section (cf. §3) or if it is weakly locally compact.

i %'.% IA.. .. ..

. J 1 . .. "• " "" " • - # -" -",," o+ -" - " " •"'," - -' " " - ". "%.% ', 
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Proof. (a) is immediate from (4.25). For (b), by Rockafellar

[49, Theorem 5B] C bounded is equivalent to D = W. Now assume

0 C = (0). If C is weakly locally compact, Kthe [31, page 343] implies

. C bounded. Finally, assume C has a bounded nontrivial section. If

C were unbounded, Rockafellar [49, Theorem 5B] would imply D is a

proper dense subset of W. On the other hand, (3.3) implies D has non-

empty interior, which (since D is convex) implies int(cl D) = int D.

Since the latter would be contradicted by proper denseness, C must be

bounded.

Part (b) of Corollary 3B, given mainly for completeness, deals once

and for all with the relatively uninteresting (in the stability context

of this paper) case in which C has a bounded nontrivial section and

0 C (0). For all subsequent results the reader could assume that

o+ C (01.

For general monotone variational inequality problems V(a) it is

helpful to make the following definitions.. The terms used are consistent

with traditional terminology in the optimization literature, and their use

here is justified by Theorem 3. For any a E W, define r(a) to be

strictly feasible, strongly feasible, feasIble, or weakly feasible,

respectively, according to whether the parameter a belongs to the set

T(C) + int D, ri(conv T(C) + D), T(C) + D, or conv T(C) + cl D

"" The following is immediate from (4.27) of Theorem 3 and the fact that

:- . a finite-dimensional convex set has nonempty relative interior.

*6 "

0°
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COROLLARY 3C. One always has

strong feasibility -> quasistability

(recall (3.8)), with the converse also true when Z is finite-

dimensional.

The following theorem provides a number of characterLzations of

stability. More will'be added in Theorems 5 and 6.

~ %°
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* THEOREM 4. Consider the following seven conditions:

(I) 0(O) is nonempty and bounded [compact existence].

(II) 0(a) is nonempty and uniformly bounded for all a in

some neighborhood of the origin.

(III) 0 E B(C and rl is locally bounded at the origin (i.e.,

"(a) is uniformly bounded for all a in some neighborhood of the origin).

(IV) 0 E int .6(CD [stability].

(V) 0 E int(conv T(C) + D).

(VI) 0 E cony T(C) + int D.

(VII) 0 E T(C) + int D [strict feasibility].

One always has

(I)<- If)<->(III) <W> (IV) <-> (V) <=(VI) <=(VII).

If C admits a bounded nontrivial section (see §3), then all seven

conditions (I) - (VII) are pairwise equivalent, and furthermore,

0 E h(o\int (n) n (0) contains a halfline . (4.33)

.. Proof. Clearly, (VII) => (VI) t> (V) and (II) w> (I) and

(II) => (III). By Rockafellar [50, Theorem 1], (III) -> (IV) -> (II).

* By Theorem 3, (IV) <-> (V). We conclude the proof by establishing (4.33)

and (I) -> (IV) -> (VII) under the assumption C admits a bounded

nontrivial section, that is (cf. (3.3)), assuming

0 nt D . (4.34)

Observe that Theorem 3 with (4.34) and (4.24) imply

.m, 0 # mt B(C ,Liin
i %*N.% % • -'' " • "" ""% • .,=--" "- % % . %"" - " -- " " " " " %-- -" - -,-.- • -,. . , 
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Corollary 3A and (2.3) imply

int i) - mt cony .(C

and also

int cony .(C - nt cl cony .(C

(since cony .(O is convex with nonempty interior). Therefore,

0 mnt .) - int cl cony (C . (4.35)

In view of (4.35), if 0 E .()\int .(C). then Rockafellar [50, Lemma 3]

implies 0(0) contains at least one halfline. This establishes (4.33),

* from which follows (I) -> (IV). Finally, let (IV) hold. By (4.34)

there exists some b E- int D. Then (IV) implies there exists c , 0

sufficiently small that

a:- b E int .8(0 C &(ro (T + NC)

and a E - nt D. Hence, there exists (z,w) such that z E C, w E T(z)

and a E w + Nc(z ) . Therefore,

SwENc(z) - a CD + int D c int(D +D) int D

(since D is a convex cone), and so

0 E w + nt D C T(C) + int D

Part of Theorem 4 relates to previous work. The existence part of

(VII) >' (I) generalizes results obtained for the case Z -. Rn and C

a cone by More' [40, Theorem 3.2] (see also Saigal [55)), Karamardian

[28, Theorem 4.1] and McLinden £35, Theorem 1]. Also, (VI) - (I)

generalizes in the same way a result of Mangasarian-McLinden [34, Theorem 1.4].

V.- -.-. -" --
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The following corollary points out, among other things, that strict

feasibility and the superficially weaker condition

0 E cony T(C) + int D,

which we call distributed strict feasibility, are actually equivalent

whenever they make sense, i.e., whenever ¢ int D.

COROLLARY 4A. Assume C admits a bounded nontrivial section. Then

the four conditions

compact existence, stability, strict
feasibility, distributed strict feasibility

are pairwise equivalent. Moreover,

int D() - cony T(C) + int D - T(C) + int D (4.36)

(in addition to (4.25) of Theorem 3).

Proof. The first assertion simply restates the equivalence among

(I), (IV), (VII), (VI). For the second, consider any fixed a EW.

Since the multifunctions T and M defined by
a a

T (z):- T(z) - a ,M (z):-n M(z) - aa a

satisfy

£(T) I- =(T) - (0,a) , b(Ma) iJv(M) - (0,a)

where .(.) denotes the graph of a multifunction considered as a subset

of Z x W, one has T monotone (resp., M maximal monotone) if and only
Ta a

if T is monotone (resp., M is maximal monotone). Also, the multi-

-1function 0a: ( )' satisfies .g(c ) - .f)- a. Now apply to T and
a a a

0 the equivalence among (IV), (VI), (VII).
a

-,"--'' 7-: .' . -:" " '-.a.,...-.., . .- "'-.. . .-.. " ... ''''',,. '-',..'.'. '-'.',.... ',
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COROLLARY 4B. (a) In order for 0(a) to be nonempty and uniformly

bounded for all a in some neighborhood of the origin, it is sufficient

that, for some w E cony T(C) and > 0, the set

(z EC+ Lnf ('')
z' EC

be bounded.

(b) When C admits a bounded nontrivial section, in order for

Q(O) to be nonempty and bounded, it is necessary that some E E T(C) be

such that for all X E [0,) the sets

[z E C(z, - a) < X + inf (z',w a

be nonempty and bounded for all a in some neighborhood of the origin.

Proof. Part (a) restates (VI) - (II) with the aid of (3.4). Part

(b) restates (I) - (VII) with the aid of both (3.4) and (3.5).

COROLLARY 4C. If C admits a bounded nontrivial section, then

fl(a) is unbounded if and only if a E &(O)\int .(0, in which event 0(a)

contains at least one halfline.-

Proof. For given a E W apply Theorem 4 to the operator T : T - a,

using the equivalence (I) <s (IV) and also (4.33).

Corollary 4C overlaps a result of Robinson [48, Theorem 2], who treats

the case of Z -R n, C polyhedral and T a positive semidefinite matrix,

and obtains for it additional, detailed information.

The next theorem and corollary augment significantly Theorem 4 and

Corollary 4A.. We give two formulations. For the simpler one, recall

that T is strictly monotone on C provided

'.4 - , % ' . " . - . .,' -. " . % " , + ,. 0,_ .
' 
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(z' z, w' w)> 0 whenever

w ET(z), w' ET(z'), z EC, z' EC, z z'

THEOREM 5. Along with conditions (I) through (VII) of Theorem 4,

cons ider the fo llowing condition:

(VIII) 0 E cony T(C) + cl D [weak feasibility].

The eight conditions (I) - (VIII) are pairwise equivalent whenever the

following assumptions hold:

+(a) C admits a bounded nontrivial section and 0 C # (0);

(b) T is strictly monotone on C;

(c) either (c 1 ) T is singlevalued monotone and hemicontinuous

along each line segment in C C &(T), or else (c2) T is maximal monotone

-- with C C int con . (T).

The proof is deferred; more specifically, a stronger result will be

proved below.

COROLLARY 5A. Let assumptions (a), (b) and (c) of Theorem 5 hold.

Then the five conditions

compact existence, stability, strict feasibility,
distributed strict feasibility, weak feasibility

are pairwise equivalent. Moreover,

int (O) " .(O) cony T(C) + cI D (4.37)

(in addition to (4.36) of Corollary 4A and (4.25) of Theorem 3). In

particular,

conv T(C) + cl D closed W "

FL, __?
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Proof. This follows just as Corollary 4A does from Theorem 4.

(Use (4.19) also.)

The conclusions of Theorem 5 and Corollary 5A remain valid under

considerable relaxations of hypotheses (b) and (c2). For this, we

introduce two definitions. Let us say T is asymptotically strictly

K-. monotone on C provided for each z E C there exists >0 such that

w ET(z) , w' E T(z')

+0

:...''.. ' z E(o~C)\ s , -(z'.- z,w' -w>>0O

w+-0 )

where B:- (z E z 1zl < 11. This condition is satisfied trivially by any

T strictly monotone on C (take C - 0). Incidentally, it is easy to

see that O(a) consists of at most one point when T is strictly monotone

on C. The second definition is motivated by the need to have a certain

auxiliary operator, which occurs in the proof of Theorem 51 below, be

maximal monotone. We say that T and C are in good position provided

for each z E C n &(T) there exists d E int D such that

for every 81 < 0 there exists 82 < 81 for

. which 0 E ri(conv &(T)- Cz)

,' where

- C : z + (" E O+CI82 < (i,d) < 811 (4.38)

This condition is satisfied in a trivial way if C C nt cony &(T) and

.. hypothesis (a) of Theorem 5 holds (use C C C and Lemma 2 below). More

interesting is the following general sufficient condition.

[-'.~ % n
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LEMMA 1. Assume C admits a bounded nontrivial section and

0 C 0 (01. Then T and C are in good position if for each

z E c nl &(T) there exists > >0 such that either

Z+ ((0 C)\CB) C mt cony v T (4.39)

or else

0 # t 0 C and z + ((int 0 C)\CB) c cony &0(T) . (4.40)

For proving this as well as Theorem 51 below, the following is

useful.

LEMMA 2. Assume C admits a bounded nontrivial section and

0 C 0 (01. Then for all d E int D (recall (3.3))* and al 6 <0 the

set [z E o+cj (z,d) 6) generates a base for 0 C.

Proof. Let d E mnt D. If any nonzero E 6+0C satisfied

0 < (id) then, for any z E C,

+ (GIjo < X < ~)C (z EC I (zd) > (z,d>]

S(d,e) for e:- ac(d) - (z,d> E [0,.D)

would imply S(d,e) unbounded, in violation of (3.4) - (3.5). Therefore

(z,d) < 0 for all nonzero z E 0 C . The lemma follows from this.

Proof of Lemma 1. Let z E c nl &(T). Pick any d E mnt D, and let

*61 <0. By hypothesis there exists C 0 such that either (4.39) or

(4.40) holds. Pick b < - C11dlI. Then

(,).6 0  CB (4.41)

%
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Put :- min(6 0 ,8 1 1 and pick 62< - C for some (any) C > 0. Then

62 C 61. Define Cz as in (4.38). By 6 2 < 1 < 0 and Lemma 2,

there exists z E O+C with 62 < (E,d> < • (4.42)

By choice of p. and (4.41), such a ; satisfies

4 CB (4.43)

as well as (E,d> < 61. So z':- z + E E Cz  If (4.39) holds, (4.43)

yields z' E nt cony &(T) as well, so that

0 - z- z' E int cony .(T) - C z C int(conv .(T) - C Z)

Now suppose (4.40) holds. Then

int: C z =z + [E int O + C162 < (i',d> < 61)}

and the ; in (4.42) can be chosen from nt 0+C. Then

z':- z + E E int C , and by (4.43) and (4.40) also z' E conv .(T).

Hence

0 nz' -z' Econv &(T) - int C int(conv (T) C

in this case also.

A simple illustration of the conditions in Lemma 1 is provided in

Z -IR with C the nonnegative quadrant and any T satisfying

(T) -C U {zlz < 0, z2 + 1 > exp(-zl)•

Here, 0 +C - C - -D. For any z on the nonegative z1-axis, (4.39) fails

and (4.40) holds. For any other z in C .6(T), (4.39) and (4.40)

both hold.

.- '
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Equipped with the two definitions given above, we can present a

fancier version of Theorem 5.

THEOREM 5'. The conclusions of Theorem 5 and Corollary 5A are still

valid if the assumptions (b) and (c2) are relaxed, respectively, to

(b') T is asymptotically strictly monotone on C, and

(c;) T is maximal monotone, and T and C are in good position.

Theorem 5' clearly subsumes Theorem 5. By Theorem 4, in order to

prove Theorem 5' it suffices to establish the following.

LEMMA 3. One has (VIII) -> (VI) if hypotheses (a), (b') and either

(cl) or (c;) hold.

This lemma was inspired by a certain result of Karamardian for the

problem C{O) in Rn  [28, Theorem 4.2 and Corollary 4.1] (which built on

his earlier result t26, Theorem 3(i)]).

Proof. Assume that (VIII), (a), (b') and either (c1) or (c;) hold.

Hypothesis (VIII) gives

0 Ew+clD where WE\wk,

for wk E T(zk), zk E C, )k >0, E Xk 1 1 (summation over k -1...,M).

Consider zk  for fixed k. Let C0 be as guaranteed for.this zk

by (b'). Consider first the case of (c2). Let d E int D be as

guaranteed for this zk by (c;). Pick 61 < -C'1dl. Then

(,d <"(4.44)

By (c) there exists 82 < 61 for which

%-- . . -.. . ". ..- . .
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0 E ri(conv &8(T) C Ck) (4.45)

where we write

C km zk+Ak A k E-t id 1 (4.46)

By (4.45) and Proposition 1(b), the operator T +. N C is maximal monotone.
Ck

Also, (3.4) - (3.5) imply its effective domain i's bounded, since

.(T +Nc in b(T) n c k CCkC:S (d,c). (4.47)

k

impl1ie.s W R(T + N), so
Ck

w E 9(T +NC . (4.48)
k

Now consider the case of (c 1) For any d E int D and any

62 < 6 1< - Cldil define C kand A kagain via (4.46). Then Ck is

again bounded, by (4.47). Therefore (c 1) and the BrowderfHartman-

Stampacchia theorem (e.g., [24, Theorem 4]) imply W - R~(T + N ). Thus,
Ck

(4.48) holds in either case, (c) or (c!). Hence, there exists (z ,w')

with

* w E T(z') zk Ek -w E NC (z')

Then

0 > ( z ,wk ') for all z E Ck

so

(z -Zk wk-w) (z-Zk -w):y for all z E Ck. (4.49)

Since y> 0 by monotonicity of T,
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(z, wk - wk) >O for all z EAk • (4.50)

Since A generates a base for 0+C by Lemma 2, (4.50) implies

wk E-(OC) ° . Also, z E Ck implies z - z E O+C\tO and,

using (4.44), zk - zk 0 CB. Therefore, (b') implies

y > 0 (4.51)

Since Ak is bounded (being a translate of Ck), it is equicontinuous.

Hence (using (4.51)), there exists a neighborhood U of the origin such

that

(z,w) > -y for all w E U and all z E A . (4.52)

Adding (4.52) and (4.49) yields

z, w wk +w)>0 for all z EAk and all w EU

By Lemma 2 this implies

+ oW - Wk + U C -(0 C)

and thus, using (3.7),

WWk w int(O+C) int cl D

Since this holds for all indices k,

E )(wk - w) ~E int cl D

Hence, for : E w we obtain

A'A

E -w + int cl D Ccl D + int cl D

c int(cl D + cl D) mint cl D mint D ,

"A.
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and thus

0 E1 + int D. (4.53)

cC C and wk' E T(z'), also
\ Since zk  Ck  k ndw

E cony T(C) . (4.54)

Combining (4.53) and (4.54) establishes (VI).

5. Refinements: the monotone LCP case. The general results of §4

all apply, of course, to the linear complementarity problem (abbreviated

LCP) case, in which T is linear and C is a cone. Here we derive for

this situation two additional theorems (Theorems 6 and 7 below) and

consequences. Also, here most of the earlier results will be recast for

convenience, and/or sharpened, for this important case.

From now on we denote by L the operator T, assumed linear, and by

. Q the set C, assumed to be a cone. By linearity of L we mean either

that L is an operator which is singlevalued monotone and linear on

Q C J(L) or else that L is a closed, densely defined linear trans-

formation which is monotone, whose adjoint is also monotone, and which

satisfies 0 E int(.(L) - Q). Throughout this section we assume L falls

into one of these two cases. Either case ensures that the blanket

hypothesis (cf. (2.3))

M:- L + NQ is maximal monotone (5.1)

is met (by parts (a) and (b) of Proposition 1 plus the result of Brezis

cited following Proposition 1).

? .., - -.'.** ."*
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Since now D Q 0 by putting Q*:= Q we can rewrite the

parametric solution multifunction () as

fl(P) = [z E &(L) z E Q, Lz - p E Q*, (z, Lz - p> 0) (5.2)

for all P E W. Note that, in conformity with the general scheme of §4,
*

we write Lz - p E Q in (5.2). Keeping this in mind, there should be

no confusion in comparing the present results with those in the finite-

dimensional LCP literature, where the corresponding constraint is now

often written as Mz + q f 0.

COROLLARY 1A. Even without (5.1), for any p E L(Q) - int Q the

set in (5.2) satisfies

0(p) C (z E QI (z, LF - p)<V+ (5, -p))

with the set on the right nonempty and bounded, whenever

£ ~ and y-~ Z L

(summation over k = 1,...,m) satisfy

zk EQ nA(L) , >?>0 , XA = k

P E LE- int Q y y+ (,-p)>O 0

THEOREM 2. Let Z and W be any locally convex Hausdorff spaces

paired in duality, with Z (rcsp. W) assigned the weak (resp. Mackey)

topology induced by the pairing. Assume L is singlevalued monotone and

linear on Q c &D(L). Then

!,, o. . . oO - s. .-.- . s o,. -,.. .•-, . ,,,. •o •"."° ,"""="°."""" .,"" """'"= "'.=","- .
% %-', 
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L(Q) - int Q c int .() . (5.3)

Of course, (5.3) is in addition to the general inclusions

(cf. (4.19))

( C L(Q) + 9(NQ) C L(Q) - Q*, (5.4)

" .t Q C D(NQ) C- Q (5.5)

In regard to (5.4) a well known result of Cottle [12, page 241] shows

that

- L(Q) - Q (5.6)

when Z =R, Q -]R := (zlz I _ 0 for i 1,...,n) and L is a positive

semidefinite matrix. This result was extended to successively larger

classes of matrices by Lemke [32, Theorem 4], Eaves [18], Garcia [22,

Theorem 3.4], and Doverspike [16, Theorem 3.2].

Lemke in fact gave a celebrated pivoting-type algorithm for finding

an element of 0(p), without assuming such exists, which as a byproduct

establishes (5.6) for L a copositive plus matrix. We wish to point out

that a slight refinement of Lemke's proof of [32, Theorem 4] shows that

(5.6) holds (in Z - Rn with Q =IR) with his copositive plus assumption

on L weakened to:

z E Q F> (z,Lz> 0

and

[z E Q, Lz E Q 0 =z,Lz)] '>Lz + L z E Q

6

-,

I A

.1 J. J. % % % % %
".P-------
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THEOREM 3. One always has

int .()=int(L(Q) -Q )*(5.7)

ci ii~ cl1(L (Q) - Q .,(5.8)

and, if 0 ri(L(Q) -Q* )also

ri &D(0) =ri(L(Q) -Q ).(5.8a)

A COROLLARY 3B. One has

W - l) !-> W L(Q) -Q

*THEOREM 4. For any fixed P E W, consider the following six

conditions:

MI CD(p) is nonempty and bounded [compact existence].

(II) 0l(p + a) is nonempty and uniformly bounded for all a in

some neighborhood of the origin.

(III) p E &((D and C1 is uniformly bounded for all a in some

neighborhood of p.

(IV) P E mnt .8(0') [stability].

MV p E int(L(Q) - Q )

*(VI) p E L(Q) - mnt Q* [strict feasibility].

One always has

If Q has a bounded base (i.e., nontrivial bounded section), then all six

conditions (I) - (VI) are pairwise equivalent, and furthermore,

p E &8(fZ\int .(P C (p) contains a halfline .(5.9)

F.
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Proof. Apply the general Theorem 4 to C:- Q and T (z) := Lz - p,

obtaining conclusions in terms of the associated multifunction

(T ) -1 Since 0p(a) -n(p + a) for D as in (5.2), the
p p C p

conclusions can be rewritten as indicated.

Parts of Theorem 4 (LCP case) relate to previous work on the LCP for

the case Z -.1 and Q -IR. For this case, Mangasarian [33, Theorem 2]

has given a number of characterizations of our condition (1), assuming L.

is a copositive plus matrix. Also for this case, work of Doverspike

[16, Theorem 3.3] sharpens the implication (I) at* (IV) for L belonging

to a class of matrices more general than copositive plus.

COROLLARY 4A. Assume Q has a bounded base. Then the three

conditions

compact existence, stability, strict feasibility,

are pairwise equivalent. Moreover,

int () - L(Q) - mt Q (5.10)

(in addition to (5.7)).

COROLLARY 4B. Let any p E W be fixed. (a) In order for fl(p + a)

to be nonempty and uniformly bounded for all a in some neighborhood of

the origin, it is sufficient that, for some > 0 and i E Q n h(L)

satisfying Li- p E Q the set

be bounded. (b) When Q. has a bounded base, in order for 0(p) to be

nonempty and bounded, it is necessary that some E Q n &(L) satisfy

J"= .P . - - * . .. .. . -
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.- Lz - p E int Q and be such that for all X E £0,0) the sets

(z E Q (z, U p a)

are bounded for all a in some neighborhood of the origin.

COROLLARY 4C. If Q has a bounded base, then Cl(p) is unbounded if

and only if p E .5(0)\int .(n), in which event 0(p) contains at least

one halfline.

This overlaps a result of Cottle [13, Theorem 3.1], 0ho treats the

case Z and Q -R" with L a copositive plus matrix.

The following theorem sharpens Theorem 4 (LCP case) for the pivotal

parameter choice p - 0.

THEOREM 6. Let (1 ) through (VI ) denote the conditions of

Theorem 4 (LCP case) corresponding to p -0. Consider also the following

four conditions:

(I) Only z = 0 solves the system
0

z EQ nh(L) , Lz EQ , (z,Lz)-O ;

(I") L is asymptotically strictly monotone on Q (defined in
0

§4 following Corollary 5A);

(IV) -
0

(V) W L(Q) -Q

One always has

!......'."(Io) <=w> WI) <=> (III) <- (iio) <-> (II1o) <,,>
00 000

S<> (V) <W (IV) <W> (v' ) <-> () <-
0 0)

... ,%

:..
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If Q has a bounded base, then all ten of these conditions are pairwise

equivalent.

Proof. In view of Theorem 4 (LCP case) and Corollary 3B (LCP case)

it will suffice to show that (Io) => (Io) <-> (I") and (IVo) => (IV').

The latter follows from (5.7), since L(Q) Q is a cone. To see

(Io) => (Io, observe that if some nonzero z E &(L) satisfied z E Q,
00

Lz E Q and (z,Lz) 0 0, then by all the positive homogeneity it would

follow that ((0) D fXzIO < X < t), showing 0(0) unbounded. Finally,

(Io) is equivalent to the condition

I z,Lz) > 0 whenever 0 0 z EQ nf.(L) and Lz EQ

This implies (take 0 = 0) and is implied by (use homogeneity) the

condition

there exists >0 such that (z,Lz) > 0

whenever z E (Q n &(L))\CB and Lz E Q •

This is implied by (take z" - z, z' - 0) the condition that for every

z' E Q n &(L) there exists C > 0 such that

( (z" - z', L(z" - z'))> 0 whenever

(5.11)

z",z' E &(L), z" - z' E Q\CB, L(z" z') E Q*

* Since (5.11) depends not on z' but only on z - z" - z' the converse

implication also holds. By linearity of L, this last condition is

equivalent to (III)

In view of Theorem 6, nothing new is contributed to the LCP case by

Theorem 5'. This is because Lemma 3, when applied to the present LCP case,

p. V °,,

S

1 -, S ._ . _. . .*,, . ' _. ' . . % °. . . ' , - - ' . , ,- . • . -. ,. . , **- "+,
• -..,. , ,- .-.-,.,,,,,. ,.,.,,..,. ' ',. ,.. ,. ', - .,,,. . .. ., . -.. . .. +.. . .,, ,. , . hi ,. ,.- .. . ., ..,, . .. .',.-.".. .,.. ',%

".l,, '. . +,,'-'•qP-'+ .m , • . "'" +"+ + ' " + .. ° "" ."+" . ""• ""° "+-° ' . -- " ',. " -m ".• .•-'+°m '.% +m
%

'%,. %% ' +
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amounts to the implication (I") " (VIo) under hypotheses slightly
0 0

stronger than required by Theorem 6.

Parts of Theorem 6 relate to previous work on the LCP for the case

Z =  and Q =R . In this case the equivalence among the conditions

(IVo'), (v), (V1o) has been shown by Mangasarian [33, Corollary 3] for

L a copositive plus matrix. The equivalence between (I') and (IV)
0 0

overlaps, again for the case Z = n  and Q - R, results of Aganagic-

Cottle [i] and Pang [46], both of which depend on a result of Karamardian

[27, Theorem 4.1].

The following is a theorem of the alternative >'-tch of course covers

positive semidefinite matrices.

COROLLARY 6A. If Q has a bounded base, then exactly one of the

following alternatives holds:

(i) there exists z such that 0 0 z EQ n (L), Lz EQ ,

(z,Lz> - 0.

(ii) there exists z such that z E Q n .(L), Lz E int Q

Proof. This expresses (I) <-> (VIo).

oa

Let us say L is skew-symmetric (i.e., anti-selfadjoint) if

(Lzl1 z2 > - (z , -Lz2 > for all z1,z2 E h(L). This implies that

(z,Lz> - 0 for all z E .(L).

COROLLARY 6B. If Q 0 (0) has a bounded base and L is skew-

symmetric, then there exists a nonzero z E Q n &(L) such that Lz E Q

Proof. Suppose 0 E L(Q) - int Q , that is, L E int Q for some

E5 ~Q nl .(L). Necessarily ~ ~0, since otherwise 0-U E mnt Q*

% % .
.50
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implying Q -W, in violation of Q ( C0). Then the proof of Lemma 2

yields (Z,L) > 0, violating skew-symmetry. Therefore 0 1 L(Q) - int Q

Now apply Corollary 6A.

In Corollary 6B it can happen that the z in question satisfies

Lz - 0 (e.g., if Q C L (0)). Also, recall that Tucker's theorem [57,

Theorem 5], which addrepses the case Z IR and Q -]R+ with L a

skew-symmetric matrix, assures that the z in Corollary 6B can be taken

to satisfy z + Lz E int Q also. We note that this additional property

2my fail for other choices of Q, as is illustrated in 3t by

L 0 1 and

Q I zlz 2 > z and a -z i 3 for any .0 < a </2 -1

It follows from the proof given below for (5.13) that under the

hypothe. 's of Corollary 6B there exists z0 E Z such that

0 z and (zOa) <0 for all a E () . (5.12)

THEOREM 7. Assume Q ( 0 has a bounded base and that L is skew-

symmetric, &(L) - Z and L is continuous. Then for each

p E h(Q)\ int &(0) there exists z E Z such that
P

0 z and (z a) <_(z ,p) for all a E h(D) , (5.13)
pp - p

or equivalently,

0 z EQ Lz EQ , (z ,p)-O , (5.14)
p p p

or equivalently,

0 z E 00(p) . (5.15)

- • . .% %,.......... .-
.'-. '-.." .." ". "-'..," . . '.'.... .'. -".-. ... . ' . *. .. -,.:'..' ' . .. -,'-.. ..- '. . .. .. " ". ,- ..- e , "- '-, - -","',", " . ."+' .- ..'+ ..' ." ,",," ," " -'.*. ' " -* ,* - .', ''. ". ". . . .." -,,,-, .'%"%"","-",% \' "
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- In particular, there exists z0 E Z such that

+-1* +
S0 z0 E O0+(O) mQ r L'(Q) 0 (p) for all p E L(Q) -Q*

(5.16)

where

0 (P): z E E&(L)Iz E Q, Lz -p E Q* (5.17)

Proof. Assume Q has a bounded base. Then int &D is nonempty,

by (3.3) and (5.7), and convex, by Corollary 3A applied to 0 - (L + N Q1

via (5.1). Hence, by the separation theorem, for each p E &(O)\int .C7

there exists z such that (5.13) holds. In view of (5.7), it is routine

to show (5.13) equivalent to (5.14) (use -L - L and Q00  Q) No

assume &D(L) - Z and that L is continuous. Since for any
*

p E L(Q) - Q the nonempty set O(p) given by (5.17) can be written

9(p) -QnL (Q +P)

it follows from Rockafellar [49, Theorem 2A(b)] and continuity of L that

++L-l*
0+t(p) mQ nOL (Q + p)

From the definitions, 0+ L (Q* + p) L1 0 +(Q + p). On the other hand,

suppose E0+L'(Q + p). Pick any z E L (Q + p). By [49,

Theorem 2A(b)], z + X EL (Q + p) for all ).>O, so

Lz + XL! E Q + p for all X > 0. Hence L E 0+(Q* + p), using £49,

Theorem 2A(b)] once more. Thus,

0+L' (q* + P) L-1o+(Q * + P)

OL N

,'- , ".'-i',' ' "i " ".' " "" "'" ' ,"'"".". '.." . """. ,,..''', " .. '"% ' 2 " ° •" "•"- r... . - ,¢ ... ja~ -V.% .. ,
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Since clearly O+(Q + p) = Q we have shown

0 +(p) - Q r) L (Q*) for all p E L(Q) - . (5.18)

Now assume L is skew-synmetric. Then
'a

(p) - W(p) ( (z E z(z,p) - 0,

so (using [49, Theorem 2A(b)3 again)

O+(I(p) - 0+0(p) n fz E zI(z,p> * 01 for all p E ( . (5.19)

The equivalence between (5.15) and (5.14) now follows by combining (5.19)

with (5.18). The last assertion follows from what has already-been.

established, since 0 E .h(o)\int h() when L is skew-symmetric and

Q # (0] (by the proof of Corollary 6B).

Conclusion (5.16) can be compared with a result obtained by Lemke

[32, Theorem 5] for the case Z 2En  and Q -PR4 with L a positive

semidefinite matrix. He showed that for each p E L(Q) - Q* for which

f(p) is nondegenerate, 0(p) must contain at least n rays (some of

which might conceivably be parallel). Notice that f(p) nondegenerate

implies 0(p) has at most one element, hence by Cottle's result (5.6)

exactly one element, and thus by (5.15), (5.9) and (5.10) requires that
,

p E L(Q) - int Q.

A toy illustration of Theorem 7 (yet one adequate for §6) is provided

in ith~ ~ and L -( ].One has
L(Q) - Q For P w L(Q) - * (p) is

given by:

.a.~~~~~~ %~ %~.a~~~*
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tzO < z1 -pp- 2 .j if p, > and p5'-'"* -: [zl0--< zl ~~~--"P2' P1 -- z2 < e0 £P -> 0adP2- < 0,

.zjo < z1 < "p2 '< z< z2  i co if P1 < 0 and P2 < 0

.,'. For p E .(O), O(p) is given by:

uPS

[. 0, p1 <z 2 < i if p, 0 and

[ ": (-PIp, if t Pl > 0 and P2 < 0

"" z[O < " 0 - z21 if p, - 0 and p2 < 01. -P 2_P

[ ((0,0)) if P1 <0 and P2 <0
'.

* OZ1 in 0 <z 2 < 0) if P1 < 0 and P2

- 6. Application to linear prorammin in reflexive Banach saces.

All the results of §4-5 apply to the fundamental problems called linear

programs, as follows. Let X (reap. Y) be a reflexive Banach space with

dual V (reap. U), and let Q1  (reap. Q2) be a nonempty closed convex

cone in X (reap. Y). Write Q - Q for i - 1,2. Let A be a

- closed, densely defined linear transformation from X into U. Recall

* that then the adjoint A of A, mapping Y into V, is also a closed,

0 densely defined linear transformation, and if h(A) - X with A

continuous, then (A) Y with A continuous. For each fixed para-

meter pair (c,b) E V X U, the optimization problems
m

inf[(xc>lx E Q1 n (A), Ax - b EQ;) , P(c,b)

sup[(by)jy E Q2 f (A), -A + c E Q D(cb)

I.3

P_

,-- " .. . . ....;.',. :'..'.'. .'. ,. ... ,'.'.,'. . % 
5 
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correspond to the classical primal-dual pair of linear programming

problems. For a comprehensive treatment of the basic, finite-dimensional

case, see Dantzig [15]. Extension of the theory to infinite dimensions

was initiated by Duffin [17]; see Nakamura-Yamasaki [45] and the references

therein for further infinite-dimensional results.

To apply the present results to the dual pair P(c,b), D(c,b) of linear

programs, one verifies first without difficulty that a pair (x,y) is such

that x solves P(c,b) and y solves D(c,b) if and only if it satisfies

the conditions

x E Ql n (A) , A-b EQ 2 , (6.1)

y EQ 2 n &(A -y + c EQ1  , (6.2)

(x,c) - (by) . (6.3)

Next, introduce

Z:= X X Y , W:-V xu , (z,w):= (x,v) + (u,y)

Q:= Q1 x Q2  p:- (-c,b) , a:- (-v,u)

and define a closed, densely defined linear transformation L from Z

into W via

L(z) - L(x,y) : (-A*y,Ax) on &(L) : .(A) X D(A*) . (6.4)

This leads to the adjoint given by

L -Lon &(L) ".5(L) , (6.5)

so L is skew-symmetric.' It can be shown that
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L is maximal monotone (6.6)

(for such an A) without using the reflexive Banach space assumption,

that is, in the general setting of X and V (resp. Y and U) locally

convex Hausdorff spaces paired in duality.

To ensure the blanket hypothesis (5.1), we assume that

either QI C D(A) and 92 C D(A*) (6.7a) I
or 0 e int(V(A) - Q1 ) and 0 e int((A*) - Q2) . (6.7b)

This is of course satisfied trivially if .(A) - X with A continuous.

One can check easily that, for p = (-cb), the solution set O(p)

in (5.2) and the feasible set 0(p) in (5.17) here take the form 1
0(p) = [(xy)I(xy) satisfies (6.1), (6.2), (6.3)3

- (p) n (x,y) I(x,c) - (b,y)j

[xIx solves P(c,b)) X (yly solves D(cb)) (6.8) i
and

f(p) - ((x,y)l(x,y) satisfies (6.1), (6.2)1 1
= [xix feasible for P(c,b)) X [yjy feasible for D(c,b).

(6.9)

The condition frequently invoked in §§4-5 that Q have a bounded

base (i.e., bounded nontrivial section) becomes here the condition

both Q, and have a bounded base , (6.10)

which by (3.3) is equivalent to the condition

0 int Q and iIintQ 2* (6.11)

1 Q2

%* %~
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With the above identifications, all the results of §§4-5 apply to

P(c,b) and D(c,b) with (c,b) treated as the parameter. Various new facts

are obtained about linear programming.
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